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Abstract: What does quantum physics tell us about the nature of reality, specifically the parts of 
reality we do not directly perceive called hidden variables? One may think it could tell us a lot 
because of our enhanced technological sensing abilities that delve into the realms that quantum 
physics covers so well. Surprisingly, it seems to surround us in a deeper mystery rather than 
reveal more of nature’s secrets. It seems that we cannot escape from philosophical 
consideration when dealing with what is hidden in quantum physics. In Part I we will look at 
how Epistemology and Ontology bear upon Hidden Variables. In Part II we will consider 
Hidden Variables in the light of Contextuality, and Non-Classicality. Inevitably questions of 
subjectivity and objectivity arise in dealing with states of observation. How should we think 
about these states? Perhaps it is a question of the meaning associated with our knowledge of a 
state—that is, a question of ontology or epistemology. The issue of ontic and epistemic states is 
particularly important when considering hidden variables in quantum physics because, as one 
may argue, the interpretation of quantum states as either ontic or epistemic will naturally lead 
to different assumptions about how reality is constructed; if it is constructed or not. It also raises 
the question of what attributes we are able to observe simultaneously and that brings 
contextuality into the discussion. If it turns out that reality is constructed contextually what 
does that imply about ontological realism? If on the other hand reality is constructed non-
contextually what does that imply about ontological realism? Many implications can arise when 
considering these questions from a quantum physical point of view. In this paper I shall discuss 
how quantum physics provides some answers to these questions by considering quantum 
physical states and their measurements. 

Keywords: Ontology; Epistemology; Hidden variables; Quantum physics; Contextuality; 
Reality; Mind 

 

 

“Reality? What a concept.” 

Robin Williams 

 

In this paper, I wish to examine several issues regarding just what quantum physics is 
telling us about the nature of reality, specifically the parts of reality we do not directly 
perceive called hidden variables. In Part I we will look at how Epistemological and 
Ontological considerations bear upon the existence of Hidden Variables (HV). In Part 
II we will consider HV in the light of Contextuality, and Non-Classicality. 

We can actuality put both parts under one question: Is there a hidden nature of 
reality? Some writers in consideration of quantum physics even bring into view a 
perhaps more fundamental question. They ask us to pose on whether there is an “out 
there” out there at all. Perhaps, they say, it would be more fruitful to consider the “out 
there” as a product of the “in here”; in other words, quantum physics is telling us that 
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the universe is a mental construction.1 Such an answer may appear to be nonsensical 
until we begin to explore it more carefully from a quantum physical point of view. I 
shall be doing this in this article. 

Now the epistemology and ontology of HV has been examined fairly often in the 
literature. So let me begin there. Some of what I need to point out here has been 
described in my earlier paper.2 Let me repeat some of what I wrote there for clarity 
and add some new information and some new insights not discussed previously. 

PART I: QUANTUM PHYSICS: EPISTEMOLOGICAL OR ONTOLOGICAL 
HIDDEN VARIABLES? 

How should we think about subjective states vs. objective states when considering HV 
in quantum physics? We would tend to think of subjective states in terms of 
epistemology—what we know or don’t know about what is thought or observed in 
regard to the “out there” world. For example, I really don’t know if you think the world 
is round or if the moon is made of green cheese. I would in high probability believe 
you thought “yes” to the first postulate and “no” to the second. My beliefs concerning 
what you think constitute what we mean by an epistemological state regardless of the 
actually shape of the earth or the composition of the moon. 

 Contrarily we tend to think of objective states in terms of ontology as properties of 
things—real or imagined—out there in the physical world or out there in the minds of 
others represented as facts. For example, we would classify as an ontological state the 
fact that the earth is round or the moon is not made of green cheese. 

Are such considerations a question of the meaning associated with the word 
“state”? E.g., is a quantum state to be regarded in the same sense as we regard the 
classical state of a ball while at rest or while moving after being struck by a bat? What 
sort of word should we use to describe the batted ball? Shall we say it is in a state of 
motion—albeit an observed state of motion—and even more—an objective or 
ontological state? What if I am not watching the ball or am unable to watch it as it 
moves, but only capable of surmising the trajectory of it based on the sound of the bat 
hitting the ball. Should I, based on the smack of the bat on the ball, ascribe a 
probability distribution to the possible trajectories that may have developed while the 

                                                             
1 Henry, Richard C. “The Mental Universe.” Nature 436: 29, 2005. Also see:  
Kastrup, Bernardo. “On the Plausibility of Idealism: Refuting Criticisms.” Disputatio 9 (44): 13-34, 2017. 
Kastrup, B. (2014). Why materialism is baloney: How true skeptics know there is no death and fathom answers to life, the 
universe, and everything. Winchester, UK: Iff Books. 
2  F. A. Wolf “Ontology, Epistemology, Consciousness, and Closed Timelike Curves.” Cosmos and History: 
The Journal of Natural and Social Philosophy, vol. 13, no. 2, 2017 
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ball took its course through the air or on the field of the ballpark? If so, what do I call 
the state of the unseen, yet struck, ball? 

I would certainly surmise, believing that there was a baseball hit by a bat, that it 
did have a trajectory—an objective ontic state of motion—yet not having seen the ball, 
but only heard the bat strike it, what shall I label the state of the ball under these 
unseen circumstances? Surely I could and most likely would ascribe a probability 
distribution to the many possible trajectories such as ascertaining the height of the ball 
in the air, whether it was foul or fair, how it had top spin or not, etc. Such a probability 
distribution would be called an epistemic state since my knowledge of the trajectory—
that is my knowledge of its ontology—is incomplete. 

Here we run into some difficulty dealing with epistemology or epistemic states. 
Different epistemic states can describe the same ontic state. E.g., the ball could be 
considered to have a distribution of trajectories and spin possibilities—top spin or back 
spin—while moving as a fly-ball or as a ground-ball. If the ball had top-spin and was a 
either a fly- or ground-ball, then both probability distributions, fly or ground, are 
epistemologically correct descriptions of the baseball’s ontological spin because I don’t 
know whether it was a ground or fly ball. 

 

 

Fig. 1. It’s easy if  it’s ontological. 
 

Or consider what happens when I flip a coin and cover it up before anyone can see 
the face of the coin showing—heads (H) or tails (T). If the coin was a fair coin, all I can 
do is assign an epistemological distribution of probabilities, PH = ½, for heads, and, 
PT = ½, for tails. Such a distribution would constitute the state of the side of the coin 
showing as an epistemological state. But suppose I peek at the coin, but don’t let you 
see it. Your knowledge of the coin would remain epistemological while mine would 
suddenly become ontological because I now know the coin is in the ontological state of, 
e.g., H. 
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As another classical epistemic example, consider the case of a biased flipping of a 
coin in one of two distinct ways. In the 1st way the coin has a probability P1 of coming 
up H while in the 2nd way the probability for H is P2 ≠ P1. If the coin is flipped and then 
observed any number of times, regardless of the results obtained, we cannot know for 
certain by which method the coin was flipped, although the observed frequency of 
heads resulting could provide a clue provided we knew that the same way of flipping 
was used for each flip. Not knowing this, the result, H, could have been obtained with 
either mode of flipping. Hence we cannot uniquely assign either probability P2 or P1 
and these probabilities remain epistemic although the unobserved method of flipping 
certainly need not be so. 

In another classical epistemic example3,4,5, consider a die prepared in a special 
manner that shows the value 2 with a predicted probability of 1/3. We cannot know if 
the die was prepared in such a way that only prime numbers (2, 3, or 5) were allowed to 
show (it had these numbers repeated on opposite sides), or if only even numbers (2, 4, 
or 6) were allowed to show. Each distribution has the number 2 in common, so the 
distributions are conjoint and epistemic. 

 

 

Fig. 2. Loaded dice, but which way? 
 

The implication here is that whenever there are two or more possible ways of 
preparation or as we shall put it, distributions of HVs that give the same observational 
result we say these HVs make up an epistemological conjoint state. While this may 

                                                             
3 M. F. Pusey, J. Barrett, and T. Rudolph. “On the reality of the quantum state.” 
http://arxiv.org/abs/1111.3328v2. Also see: Nature Physics (2012), published online 06 May 2012. 
4 M. F. Pusey, J. Barrett, and T. Rudolph. “The quantum state cannot be interpreted statistically.” 
http://arxiv.org/abs/1111.3328v1. 
5 E. S. Reich. “A boost for quantum reality.” Nature Vol. 485. 10 May 2012. pp 157-8. This example was 
given to Reich by Terry Rudolph. 

http://arxiv.org/abs/1111.3328v2
http://arxiv.org/abs/1111.3328v1
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seem obvious in classical consideration (i.e., non-quantum physical) there are other 
possible implications when quantum physics is brought to bear. In quantum physics we 
need to carefully reconsider ontology and epistemology and in so doing a lot of 
confusion can arise. 

In a remarkable remark, physicist E. T. Jaynes once stated:6 
We believe that to achieve a rational picture of the world it is necessary to set up 
another clear division of labor within theoretical physics; it is the job of the laws 
of physics to describe physical causation at the level of ontology, and the job of 
probability theory to describe human inferences at the level of epistemology. The 
Copenhagen interpretation scrambles these very different functions into a nasty 
omelet in which the distinction between reality and our knowledge of reality is 
lost.  

Suppose we prepare this omelet by giving it a different stir. Is the quantum wave 
function (QWF) epistemologically imagined or ontologically real? In an earlier Nature 
review7 E. S. Reich discussed the work of three physicists: M. F. Pusey, J. Barrett, and 
T. Rudolph (PBR).8 PBR, basing their work on a number of previous epistemic vs. 
ontic considerations dating all the way back to the Einstein-Bohr debate at the 1927 
Solvay conference in Brussels and continuing with the 20th and 21st century work of 
many others notably Einstein, Ballentine, Bohm, Bell, Peierls, Caves, Fuchs, Harrigan 
and Spekkens, Kochen and Specker (about whom I have more to say later), and 
others,9 once again throw down the gauntlet of uncertainty by attempting to provide an 

                                                             
6 E. T. Jaynes. “Clearing up mysteries.” In the Proceedings Volume: Maximum entropy and Bayesian methods. 
J. Skilling (ed.). Kluwer Academic Publ. Dordrecht, Holland (1989). pp 1-27. 
7 E. S. Reich. Ibid..  
8 M. F. Pusey, J. Barrett, and T. Rudolph. “On the reality of the quantum state.” 
http://arxiv.org/abs/1111.3328v2. Also see: Nature Physics (2012) doi:10.1038/nphys2309. Received 05 
March 2012 Accepted 11 April 2012, Published online 06 May 2012. 
9 Einstein, A., Podolsky, B. & Rosen, N. “Can quantum-mechanical description of physical reality be 
considered complete?” Phys. Rev. 47, 777_780 (1935). See also: 
Ballentine, L. E. “The statistical interpretation of quantum mechanics”. Rev. Mod. Phys. 42, 358_381 (1970). 
Bohm, David. “A Suggested Interpretation of the Quantum Theory in Terms of ‘Hidden’ Variables. I.” 
Physical Review 85: 166-179, 1952a. 
Bohm, David. “A Suggested Interpretation of the Quantum Theory in Terms of ‘Hidden’ Variables. II.” 
Physical Review 85: 180-193, 1952b. 
Bell, J. (1964). “On the Einstein Podolsky Rosen paradox.” Physics, 1 (3), 195-200. 
Peierls, R. E. Surprises in Theoretical Physics 32 (Princeton Univ. Press, 1979). 
Caves, C. M., Fuchs, C. A. & Schack, R. “Quantum probabilities as Bayesian probabilities.” Phys. Rev. A 
65, 022305 (2002). 
Caves, C. M., Fuchs, C. A. & Schack, R. “Conditions for compatibility of quantum-state assignments.” 
Phys. Rev. A 66, 062111 (2002). 

http://arxiv.org/abs/1111.3328v2


 COSMOS AND HISTORY 26 

ontic real view of the QWF, something that even Bohr most likely was not ever 
considering. Jaynes even pointed out that the famous Bohr-Einstein debate was 
actually never resolved in favor of Bohr at Solvay in 1927—although common thinking 
even among physicists is that it was—when you consider that the two physicists were 
not discussing the same physics. Bohr was only thinking about epistemic physics while 
Einstein was considering only ontic physics. Hence while Bohr believed quantum 
physics was certainly epistemically complete (like classical thermodynamics with 
hidden variables like gaseous atoms bustling around), Einstein was equally correct in 
believing that quantum physics wasn’t ontologically complete (like Newtonian 
mechanics, perhaps thinking there were also hidden variables like atoms bustling 
around which are not taken into account). 

The conflict between all we know about the physics of quantum systems and what 
we say or believe is real about them is brought forward dramatically with the concept 
of the QWF. Is the QWF ontic or merely epistemic? To decide on the ontology or 
epistemology of a QWF, the old argument, known as the HV theory dating back to the 

                                                                                                                                                                 

Spekkens, R. W. “Evidence for the epistemic view of quantum states: A toy theory”. Phys. Rev. A 75, 
032110 (2007). 
Harrigan, N. & Spekkens, R. W. “Einstein, incompleteness, and the epistemic view of quantum states.” 
Found. Phys. 40, 125_157 (2010). 
Kochen, S. & Specker, E. P. “The Problem of Hidden Variables in Quantum Mechanics.” J. Math. Mech. 
17, 59 (1967). 
Gibbs, A. L. & Su, F. E. “On choosing and bounding probability metrics.” Int. Stat. Rev. 70, 419_435 
(2002). 
Bell, J. S. “On the Einstein-Podolsky-Rosen paradox.” Physics 1, 195_200 (1964). 
Hall, M. J. W. “Local deterministic model of singlet state correlations based on relaxing measurement 
independence.” Phys. Rev. Lett. 105, 250404 (2010). 
Barrett, J. & Gisin, N. “How much measurement independence is needed to demonstrate nonlocality?” 
Phys. Rev. Lett. 106, 100406 (2011). 
Lewis, P. G., Jennings, D., Barrett, J. & Rudolph, T. “The quantum state can be interpreted statistically.” 
Preprint at http://arxiv.org/abs/1201.6554 (2012). 
Spekkens, R. W. “Contextuality for preparations, transformations, and unsharp measurements.” Phys. Rev. 
A 71, 052108 (2005). 
Einstein, A. “Letter to Schrödinger (1935).” Translation from Howard, D. “Einstein on locality and 
separability.” Stud. Hist. Phil. Sci. 16, 171_201 (1985). 
Hardy, L. “Quantum ontological excess baggage.” Stud. Hist. Phil. Sci. B 35, 267_276 (2004). 
Montina, A. “Exponential complexity and ontological theories of quantum mechanics.” Phys. Rev. A 77, 
022104 (2008). 
Montina, A. “State-space dimensionality in short-memory hidden-variable theories.” Phys. Rev. A 83, 
032107 (2011). 
Regev, O. & Klartag, B. Proc. 43rd Annual ACM Symp. Theory Comput., STOC'11 31_40 (ACM, 2011). 
Fuchs, C. A. “QBism, the perimeter of quantum Bayesianism.” Preprint at 
http://arxiv.org/abs/1003.5209 (2010. 
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mid 20th century, is revisited. This theory was probably most emphasized by David 
Bohm (who formulated from standard quantum physics an ontic QWF that influenced 
a real particle). Later it was revisited by Bell, in his famous no-go theorem involving a 
QWF describing two quantum-entangled separated particles ala Bohm’s version of the 
Einstein, Podolsky, and Rosen (BEPR) paradox. BEPR showed that such a QWF could 
not be local (measurements made on one particle at one spacetime location could 
influence and change the QWF and therefore the outcome of measurement on the 
other particle at a distant (spacelike) spacetime location simultaneously). Bell’s theorem 
shows that any hidden variable theory must involve nonlocal influences at the ontic 
level, regardless of what you think of the QWF. Hence one might conclude from Bell’s 
famous HV theorem (ala Einstein) that QWFs are epistemological rather than 
ontological since two observers could have different beliefs about the quantum state of 
their respective spacelike separated particles.10 

Quantum physical HV theories all have one thing in common; they all have ontic 
definite-valued hidden states underlying the QWF which also underlie classical physics 
and thermodynamics. A specification of these HVs should reveal the results of a 
measurement of any property or observable.11 So the question is what would one need 
to do to a HV theory to make the QWF ontological? This is precisely what PBR 
attempt by making a particular assumption: If a specification of a HV uniquely 
determines a QWF, then the QWF is ontic. If, on the other hand, specification of a HV 
does not uniquely determine a QWF, the QWF is said to be epistemic. Of course such 
an ansatz may not be sufficient to prove ontology of quantum wave functions. It just 
has us consider the question of ontology of QWFs when such a restriction is in place. 

Classical physics epistemics 

Let me now give you a simple example of the difference between ontic and epistemic 
reality taken from classical physics. Consider a ball with mass, m = ½, attached to a 
spring with spring constant, k = 2. (See Fig. 3.) 

 

                                                             
10 Indeed Einstein did make this conclusion based on the EPR argument. However, it is not a conclusion 
of Bell’s theorem and certainly not Einstein’s conclusion based on Bell’s work because he was dead at the 
time. In fact, Bell’s theorem rather stymies this line of argument, since it says that you will still have 
nonlocal influences even if the wavefunction is epistemic, so this move does not solve the problem of 
nonlocality. 
11 One may need to allow for the fact that measurements might be fundamentally noisy or stochastic and 
only demand that HVs specify probabilities for any measurement outcome. 
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Fig. 3. Ball and spring attached to a wall. 
 

Such a system is known as a simple harmonic oscillator (SHO)—stretch or 
compress the spring and the SHO “springs” into motion with the ball having 
momentum, p, and a position, x, relative to its unstretched or uncompressed 0 position, 
and constant energy, E = p² + x². I’ll use a single variable λ to denote the ontic pair (p, 
x). Suppose that someone unknown to us stretches the spring an unknown initial 
distance, x0, within a range 1 ≤x0 ≤ 2 or in a 2nd range 3 ≤x0 ≤ 4. If you think of a two 
dimensional space with orthogonal coordinate axes, p and x, the above energy equation 
describes a circle contained within one of the two sets of concentric thickened rings 
centered about the coordinate origin. Such a space is a simple example of what is 
called a phase space which in general has n dimensions of ps and xs. Each point on a 
ring provides a momentum and position of the ball which, even if not observed, hence 
hidden, are ontic variables. At no time do the different rings have common points of 
overlap. 

 

 

Fig. 4. Disjoint epistemic probability distributions in phase space for a 
SHO (see text.) 

 

We can think of the rings as disjoint probability distributions, p1(λ) and p2(λ), of 
positions and momenta—disjoint because we never have any λs in common—the rings 
are concentrically nested (See Fig. 4.). Each λ may be a uniformly distributed (over 
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time) HV satisfying the SHO energy equation. However, as I said, these simple 
distributions would be disjointed. Hence p1(λ)p2(λ) = 0 always since each λ uniquely 
determines its own distribution (in which ring it belongs). Consequently if there was a 
state α1 associated with p1(λ) and a state α2 associated with p2(λ), then specification of 
the value of λ would uniquely determine which state, α1 or α2, we would be in. We 
could, although it is clearly not necessary, view the λs as HVs and declare the states as 
ontic since each λ determines a unique α. 

Suppose we now reconsider the initial preparation of the SHO. At t = 0, that 
unknown someone simply decides to stretch the spring a certain distance, x0, an 
amount in the range, 1 ≤x0 ≤ 3, and lets it go 12. We would then find a thick ring-band of 
different energy possibilities in the phase plane. Or if another unknown person 
prepares the SHO in the range, 2 ≤x0 ≤ 4, and lets it go, we would then find a 2nd thick 
ring-band of possibilities. The two circular bands now form overlapping concentrically 
nested distributions (see Fig. 5.). Now we have the two distributions, p1(λ) and p2(λ) 
overlapping. Then p1(λ)p2(λ)≠0 in the overlapping area 2 ≤x0 ≤ 3 and each λ no longer 
uniquely determines its own α state. A specification of λ in the overlapping probability 
distribution would indicate we were in either the α1 or α2 state and that would make 
the states epistemic. 

 

 
 

Fig. 5. Conjoint (overlapping dark grey) epistemic probability distributions 
in phase space for a SHO (see text.) 

 

PBR’s proof is based on a contradiction that arises between the probability 

                                                             
12 In this SHO example (with m=½ and k=2), assuming at t=0, the spring is stretched to a distance, √E, 
we get x=(√E)cos(2t) and p=(-√E)sin(2t). The point in the phase plane rotates clockwise around the circle 
completing the cycle in the period of π. The probability density is simply a constant, dP/dt=1/π, for all 
such circles regardless of the energy. Indeed that’s why spring clocks work. 
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predictions of quantum physics when QWFs are considered to be “ontological” (their 
respective HV probability distributions are disjoint) and the same predictions based on 
“epistemic” QWFs (their respective HV probability distributions are conjoint). They 
consider this contradiction in a series of ever increasingly complex arguments that 
includes a calculation eventually involving n identically prepared and uncorrelated 
independent states as well as noise considerations. Accordingly, whenever QWFs of 
observables are governed by disjoint distributions of ontic HVs, these QWFs are 
uniquely determined and must be ontic even though their respective distributions are 
epistemic (similar to arguments made in statistical mechanics). Thus if the states of a 
quantum system are specified by QWFs which are determined by disjoint epistemic 
distributions over ontic variables, the QWFs are as ontic or real as any observable in 
physics. On the other hand, if such distributions governing these QWFs are conjoint, 
that is, they have values of ontic HVs in common; the QWFs are epistemic or merely 
represent knowledge (probabilities) of observables in question. 

Simple quantum physics ontology and epistemology  

Before we look at PBR’s argument, I want to explain a little more about why 
overlapping probability distributions lead to a contradiction in the quantum physical 
predictions. Consider for simplicity a top hat probability distribution, pψ(λ). We shall be 
looking at two special cases ψ = N and ψ = S, (you can think of these states as polar 
opposites) associated with orthogonal QWFs, N and S, respectively (that is, 
<N|S> = 0), which have a common overlapping area of an HV, λ (λ could also 
indicate a set of HVs). A common λ means simply that both pS(λ) ≠ 0, and pN(λ) ≠ 0 in 
the overlap as shown in Fig. 6. 

  

 

Fig. 6.  Conjoint top hat (overlapping) epistemic probability distributions 
for orthogonal quantum physics states. 
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1st case: Now consider the probability of obtaining a measurement of N and 
suppose that this probability depends only on the HV λ. We can write it as a 
conditional (Bayesian) measurement probability, M(N|λ). To obtain the total 
probability, P(N|ψ), that is, to get the probability for result N for any QWF, ψ, we must 
calculate P(N|ψ) = ∫M(N|λ)pψ(λ)dλ. That is, we multiply the probability of obtaining a 
result for a given λ by the distribution function, pψ(λ), specific to the chosen QWF, ψ, 
and integrate over all λ. From the Born Rule of quantum physics, 
P(N|ψ) = <ψ|N><N|ψ>. 

2nd case: Next consider a measurement of S which is also given by a conditional 
measurement probability, M(S|λ), which is also clearly dependent only on HV, λ. Now 
suppose we wish to obtain the probability of getting the result, S. Similarly, to obtain 
the total probability P(S|ψ) for getting the result S, we must have 
P(S|ψ) = ∫M(S|λ)pψ(λ)dλ. And again from the Born Rule: P(S|ψ) = <ψ|S><S|ψ>.  

Now if M(S|λ) and M(N|λ) are the only probabilities of obtaining values by 
measurements, and since there are only two such values possible, then clearly 
M(S|λ) + M(N|λ) = 1. There can be no other result possible and this must hold for 
every λ value. In plain language, specifying λ must lead to unity probability when all 
possible results of a measurement are taken into account with ontic variable λ 
specified. For example, λ could be a simple option, λq or λd, for an unseen biased 
coin—use a quarter or use a dime. Using a quarter suppose M(H|λq) = .25 and 
M(T|λq) = .75 or using a dime suppose M(H|λd) = .65 and M(T|λd) = .35. In each 
HV option, dependent on the value of λ, head (H) and tail (T) are clearly orthogonal 
results after a toss of the coin. Again, as in the other coin example, after many such 
observations we could only guess the HV of the coin was a dime or a quarter because 
of the relative frequencies of heads to tails appearing provided we knew that the same 
type of coin was used each time. Otherwise we would never know which coin was 
used. 

However, as simple as is this N or S case, it leads to a contradiction with the Born 
rule of quantum physics that arises when you put ψ = S in the 1st case, and ψ = N in 
the 2nd case. Since S and N are orthogonal (they both cannot occur), <S|N> = 0. 
Hence in the 1st case we get, 
<ψ|N><N|ψ> = <S|N><N|S> = P(N|S) = ∫M(N|λ)pS(λ)dλ = 0, and in the 2nd 
case, <ψ|S><S|ψ> = <N|S><S|N> = P(S|N) = ∫M(S|λ)pN(λ)dλ = 0. If these 
integrals are to be zero, then the integrands have to be zero for every value of λ 
because both M(N|λ) and M(S|λ) as well as pS(λ) and pN(λ) are positive functions. 
Therefore, in particular, these integrands have to be zero in the overlapping region. 
But given that both pS(λ) ≠ 0 and pN(λ) ≠ 0 in the overlapping region, that is, we have 
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overlapping distributions in λ space (see Fig. 6.), these results can only occur if both 
M(N|λ) = 0 and M(S|λ) = 0 which contradicts M(S|λ) + M(N|λ) = 1.  

Hence for this simple orthonormal case, we cannot have both pS(λ) and pN(λ) 
possessing nonzero values for any common λ. In brief they cannot have overlapping 
hidden variables. This means that a specification of λ leads to a unique ψ, either S or 
N (as in the quarter/dime example above), and we can therefore take it that for any 
common λ, pS(λ)pN(λ) = 0, so in both cases either pS(λ) or pN(λ) must be zero. PBR 
might call this a necessary step to proving that a QWF is an ontological function, but 
this proof only includes orthogonal QWFs, |N> and |S> as indicated in Fig. 7. To be 
both necessary and sufficient one would need to show that the probability distribution 
pN(λ) for |N> and any other probability distribution pψ(λ) for a QWF |ψ> cannot 
have any overlap even if <N|ψ> ≠ 0. 

 

 

Fig. 7.  Disjoint epistemic probability distributions for orthogonal quantum 
physics states leading to ontic states |N> and |S>. 

 

More complex quantum physics ontology and epistemology  

In the above case we only considered orthogonal QWFs, N and S, and found them to 
be ontic according to PBR’s supposition. Can we make the argument that ψ is real in 
any case including nonorthogonal situations? To fully answer this query, we would 
need to look at the case when possible quantum states, α and β, are not orthogonal. 
One might think that since two such QWFs, |α> and |β> do overlap, i.e., 
<β|α> ≠ 0, one might find no contradiction in having both pα(λ) ≠ 0, and pβ(λ) ≠ 0. 
Hence both α and β could be epistemic and still satisfy the Born rule of quantum 
physics. 

PBR dispel that possibility by first considering nonorthogonal states of the same 
simple system as above that is prepared with compass directions |N> or |E>, where 
|E> = (|N> + |S>)/√2, |W> = (|N> - |S>)/√2. Here we have 
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<N|S> = <E|W> = 0, respectively orthogonal, but <N|E> = 1/√2, hence N and E 
are not orthogonal.13 We shall again assume that the QWF, |ψ>, (either |N> or |E>) 
is dependent on a HV distribution pψ(λ) similar to what we did in the orthogonal case 
above. One can recognize these “directional” states as spinors, i.e., spin-½ states, 
wherein |N> means spin up in the z direction, |S> means spin down in the z 
direction, |E> means spin up in the x direction, and |W> means spin down in the x 
direction. 

The system is to be prepared in one of two ways such that one preparation 
produces |N> with unity probability, P(N|N) = ∫M(N|λ)pN(λ)dλ=1, arising from an 
epistemic pN(λ) distribution, while a second kind of preparation produces |E> with 
unity probability, P(E|E) = ∫M(E|λ)pE(λ)dλ=1, arising from epistemic distribution, 
pE(λ). The aim: If a specification of λ yields a specific QWF, |ψ>, orthogonal or not to 
any other QWF, |α>, then |ψ> must be ontic and therefore an objective real “thing” 
“out there” independent of any observer. So, accordingly, in the case involving states, 
|N> and |E>, in spite of the nonorthogonality of these states, the two distributions, 
pN(λ) and pE(λ) must be disjoint, pN(λ)pE(λ)=0, as shown in Fig. 7 only substitute E for 
S.14  

On the other hand, if λ lies within a region where |N> and |E> have conjoint 
distributions, i.e., pN(λ) and pE(λ) overlap so that pN(λ)pE(λ) ≠ 0, then |ψ> cannot be 
ontic and must be epistemic as shown in Fig. 6 (again substitute E for S).15 In brief, an 
epistemic |ψ> results in a contradiction with the prediction of quantum physics just as 
we saw in the above N and S orthogonal case. 

To clarify their argument, I will follow PBR with a slight change of notation. PBR 
have us consider a quantum physical situation in which two such identical, but 
separate, preparations |ψ1> and |ψ2> are independently made using HVs, λ1 and λ2, 
wherein both HVs lie within identical HV spaces; we have essentially two copies of the 
same hidden variable space. Consequently these preparations result in the uncorrelated 
joint quantum state |ψ1>|ψ2>, since they are produced from independent HVs. It is 
important to realize that PBR assume that both λ1 and λ2 lie within corresponding, 
respectively, identical but independent HV spaces. Thus each separate space of HVs 

                                                             
13 This sounds peculiar since clearly the directions are perpendicular. However perpendicular in space 
does not necessarily mean the same thing as orthogonal in quantum physics. For those who know a little 
quantum physics; two quantum states α and β are orthogonal if and only if <α|β> = 0. 
14 That is, there is no overlap of these probability distributions, so pN(λ) pE(λ) = 0. So this means either 
pN(λ) = 0 or pE(λ) = 0 for all λ.  
15 Here there is an overlap, so pN(λ) pE(λ) ≠ 0. So that means both pN(λ) ≠ 0 and pE(λ) ≠ 0 for λ within the 
overlap region. 
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contains an identical range, ρ ≥0, over which probability distributions are conjoint. 
Consequently each preparation produces its own corresponding HV, λi, resulting in 
identical overlapping probability distributions of |N> and |E>, wherein, 
pN(λ1)pE(λ1) ≠ 0 and pN(λ2)pE(λ2) ≠ 0, provided λ1 lies within the overlapping range, ρ, 
and λ2 lies within the same correspondingly identical overlapping range, ρ, as shown in 
Fig. 8. 

That is, both systems are prepared in such a manner that we cannot uniquely 
determine |N> or |E>. PBR also assume the probability distribution functions, pN(λi) 
and pE(λi), are the same for i=1 or 2. Since these are independent preparations, both 
pψ1(λ1) ≠ 0 and pψ2(λ2) ≠ 0 whenever λ1 and λ2 are each found in the same range, ρ. In 
Fig. 8 we are essentially duplicating the scenario shown in Fig. 6 for each copy. 

 

 

Fig. 8. Conjoint top hat (overlapping) epistemic probability distributions 
for two identical systems with non-orthogonal quantum physics states. 
 

So after preparing the joint system with both λ1 and λ2 in their corresponding 
conjoint ρ ranges, we obtain the following epistemic (possible) results for |ψ1>|ψ2>: 
|N>|N>, |N>|E>, |E>|N> or |E>|E>. All we need now is to specify the basis for 
making a measurement of the joint system. Suppose now that the two systems are 
brought together and measured using (projected onto) the following orthonormal 
entangled base states: 
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|1> = (|N>|S> + |S>|N>)/√2,       
  

|2> = (|N>|W> + |S>|E>)/√2,       
  

|3> = (|E>|S> + |W>|N>)/√2, and,      
  

|4> = (|E>|W> + |W>|E>)/√2.      eqns. 01. 
 

These four states are maximally entangled and orthogonal (<i|j> = 0, unless i = j, 
and then <i|i> = 1.) Consequently the probability for obtaining a result, i, P(i|ψ1ψ2), 
given that the joint wave function, |ψ1ψ2> = |ψ1>|ψ2>, can be expressed in a similar 
manner as for the simple case above. Following the above example and the Born rule, 
we have for the joint probability, 
P(i|ψ1ψ2) = <ψ1ψ2|i><i|ψ1ψ2> = ∫∫M(i|λ1,λ2)pψ1(λ1)pψ2(λ2)dλ1dλ2,  
where the probability of obtaining a joint measurement, M, of state |i> now depends 
on two HVs, λ1 and λ2 and we write it accordingly as a conditional (Bayesian) 
probability, M(i|λ1,λ2). Consequently, we cover all of our four bases and find for any 
chosen pair of HVs, λ1 and λ2, M(1|λ1,λ2) + M(2|λ1,λ2) + M(3|λ1,λ2) + M(4|λ1,λ2) = 1. 
This says that the probabilities of obtaining a result for i, 1 ≤ i ≤ 4, now depends on 
both given λ1 and λ2 values. Change those values and the individual M(i|λ1,λ2) may 
change, as in the case of the quarter and dime; but they will always sum to unity 
regardless whether or not the chosen values of λ1 and λ2 fall within the ranges of ρ ≥ 0.  

The question is: what are the probabilities of the results of measurement using 
(projecting onto) these entangled base states according to the Born rule of quantum 
physics? It isn’t too difficult to see that there are four cases in which we get predictions 
of zero probabilities—the result of a measurement will be to not find a specific result. 

As we see next this fact leads to a contradiction if λ1 and λ2 fall within the 
overlapping ranges of ρ, thus producing non-vanishing conjoint probability 
distributions. It is here where the independence and conjointness of the two 
individually overlapping probability distributions, pψ1(λ1)pψ2(λ2) ≠ 0, play their roles. 

In the first case, consider P(1|NN) = <NN|1><1|NN> = 0 as can be seen by 
inspection of eqns. 01. Therefore, ∫∫M(1|λ1,λ2)pN(λ1)pN(λ2)dλ1dλ2 must be 0. But since λ1 
and λ2 have non-vanishing probability distributions, pN(λ1)pN(λ2) ≠ 0, it follows that 
M(1|λ1,λ2) = 0. A similar line of reasoning applies to 
P(2|NE) = <NE|2><2|NE> = 0, where pN(λ1)pE(λ2) ≠ 0, and for 
P(3|EN) = <EN|3><3|EN> = 0, where pE(λ1)pN(λ2) ≠ 0, and finally for 
P(4|EE) = <EE|4><4|EE> = 0, where pE(λ1)pE(λ2) ≠ 0. Remember we are assuming 
that pψ1(λ1)pψ2(λ2) ≠ 0, corresponding to λ1 and λ2 each falling within the range of ρ and 
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these are the only cases of concern. 
Therefore we would conclude for these particular values of λ1 and λ2, within the 

ranges of ρ where pψ1(λ1)pψ2(λ2) ≠ 0, in each of the vanishing probabilities, 
P(i|ψ1ψ2) = 0, we must have M(1|λ1,λ2) = 0, M(2|λ1,λ2) = 0, M(3|λ1,λ2) = 0, and 
M(4|λ1,λ2) = 0, which contradicts the equation: 
M(1|λ1,λ2) + M(2|λ1,λ2) + M(3|λ1,λ2) + M(4|λ1,λ2) = 1, which is valid for all values of 
λ1 and λ2. The only way out of the contradiction is, of course, to deny the non-
vanishing overlapping probability distributions, where λ1 and λ2 are within the 
supported “overlapping” ranges of values of ρ, pψ1(λ1)pψ2(λ2) ≠ 0, can ever occur. Thus 
P(1|NN) = 0 implies that pN(λ1)pN(λ2) = 0 , P(2|NE) = 0 implies that pN(λ1)pE(λ2) = 0, 
P(3|EN) = 0 implies that pE(λ1)pN(λ2) = 0, and P(4|EE) = 0 implies that pE(λ1)pE(λ2) = 0. 
In each case it’s necessary and sufficient that only one of the pairs of pψ i(λi)s need 
vanish to rule out any overlap and thus rule in that all such ψis are ontological. Having 
either pψ i(λi) vanish means pψ1(λ1)pψ2(λ2) = 0, and consequently since both ψ1 and ψ2 are 
either N or E then the condition pψ1(λ1)pψ2(λ2) ≠ 0 is equally ruled out for each ψi. Thus 
for any pair of nonorthogonal ψis, the Born rule of quantum physics cannot be 
satisfied, if their respective HV probabilities overlap. 

Simple illustration of the BPR theorem for two states 

Of course, it could be that for most values of λ1 and λ2, outside the range of ρ, or 
indeed if ρ = 0, the condition pψ1(λ1)pψ2(λ2) = 0 need not arise to have P(i|ψ1ψ2)=0 and 
for these cases no contradiction arises. To further clarify the argument consider Fig. 9, 
where I show a possible set of conditional measurement probability distributions, 
M(i|λ1,λ2), consistent with nonoverlapping top hat probability distributions shown in 
Fig. 8 with ρ = 0. Each conditional measurement probability distribution consists of a 
quilt of four patches with M(i|λ1,λ2) being constant in each patch and i ∈ (1,4). The 
darkest patch has M(i|λ1,λ2) = 0, the light grey patches have M(i|λ1,λ2) = .25, and the 
nearly white patch has M(i|λ1,λ2) = .50. One can see by inspection that 
M(1|λ1,λ2) + M(2|λ1,λ2) + M(3|λ1,λ2) + M(4|λ1,λ2) = 1 for any pair of values, (λ1,λ2), in 
the quilt. So long as ρ = 0, we never see any contradiction arising with the Born Rule 
because the disjoint probability distributions, pψ1(λ1)and pψ2(λ2), are consistently defined 
within the same boundaries as the quilted measurement probabilities, M(i|λ1,λ2). It is 
only when pψ1(λ1) and pψ2(λ2) exceed those quilted boundaries that contradictions arise 
as indicated next. 

If we have ρ > 0, then these measurement probabilities, M(i|λ1,λ2), lead to 
contradiction with the Born rule. To see this in each of the four cases, let us again 
consider our conjoint top hat probability distributions, as shown in Fig. 7 such that, 
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pN(λ1) = pN(λ2) = 1/(1 + ρ/2) in the ρ-extended range, when 0 ≤ λ1 ≤ (1 + ρ/2) and 
0 ≤ λ2 ≤ (1 + ρ/2), resp., and 0 elsewhere. And similarly for 
pE(λ1) = pE(λ2) = 1/(1 + ρ/2) in the ρ-extended ranges, (1 - ρ/2) ≤ λ1 ≤2 and 
(1-ρ/2) ≤ λ2 ≤2, resp., and 0 elsewhere. Consequently we have the normalized 
probabilities, ∫pN(λi)dλi = ∫pE(λi)dλi = 1, for i = 1, 2. 

 

 

Fig. 9. Three dimensional views of  quilted, stepped, conditional 
measurement probabilities, M(i|λ1,λ2), consistent with disjoint top hat 
probability distributions for two identical systems with non-orthogonal 

quantum physics states. 
 

Case 1. Let us now examine the first case where 
P(1|NN) = <NN|1><1|NN> = ∫∫M(1|λ1,λ2)pN(λ1)pN(λ2)dλ1dλ2 = 0, according to the 
Born Rule. There is no problem for 0 ≤ λ1 ≤1 and 0 ≤ λ2 ≤1; we simply have on this 
patch of the λ-quilt, M(1|λ1,λ2) = 0. However in the overlapping ranges, 
1 < λ1 ≤ (1 + ρ/2) and 1 < λ2 ≤(1 + ρ/2), M(1|λ1,λ2) = .5, and consequently 
P(1|NN) = ρ2/[8(1 + ρ/2)2] ≠ 0, in contradiction of the Born Rule. 

Cases 2, 3, and 4. A similar line of reasoning applies for the other cases: 
P(2|NE) = <NE|2><2|NE> = ∫∫M(2|λ1,λ2)pN(λ1)pE(λ2)dλ1dλ2 = 0, 
P(3|EN) = <EN|3><3|EN> = ∫∫M(3|λ1,λ2)pE(λ1)pN(λ2)dλ1dλ2 = 0, and 
P(4|EE) = <EE|4><4|EE> = ∫∫M(4|λ1,λ2)pE(λ1)pE(λ2)dλ1dλ2 = 0, according to the 
Born Rule.  
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Of course, in each case, in the limit where ρ → 0, no contradiction arises and the 
correct results for the measurement probabilities are obtained. Thus, e.g., from the top 
right hand corner of Fig. 8 dealing with measurements projected onto the |2> state we 
find: P(2|NE) = <NE|2><2|NE> = ∫∫M(2|λ1,λ2)pN(λ1)pE(λ2)dλ1dλ2 = 0, 
P(2|NN) = <NN|2><2|NN> = ∫∫M(2|λ1,λ2)pN(λ1)pN(λ2)dλ1dλ2 = .25, 
P(2|EN) = <EN|2><2|EN> = ∫∫M(2|λ1,λ2)pE(λ1)pN(λ2)dλ1dλ2 = .50, and 
P(2|EE) = <EE|2><2|EE> = ∫∫M(2|λ1,λ2)pE(λ1)pE(λ2)dλ1dλ2 = .25, all consistent with 
the Born Rule leading to unity probability when summed. Similar results follow for all 
the other measurements projected onto the |i> state, with i = 1, 3, and 4.  

DISCUSSION OF PART I: DISJOINT HV→REAL QWFS 

To prove or disprove whether or not any general QWF, |α> is ontic is quite an 
accomplishment even for a limited HV, but clever, approach as taken by PBR. To 
establish that a given |α> is ontic, you have to construct an argument showing that for 
any other QWF, |β>, even when <β|α> ≠ 0, it is always possible to find such a 
contradiction as shown above. PBR use n identically prepared and uncorrelated 
independent QWFs (I looked at n=2) generating a QWF, |Ψ> = |ψ1>|ψ2> . . . |ψn>, 
where each QWF is either |α> or |β>. |Ψ> is projected onto an entangled QWF 
measuring device (a combination of various gates and other devices used in quantum 
computers called a measurement circuit) that jointly measures the n systems in such a 
manner that there is always at least one of the 2n QWFs predicted with zero 
probability. Indeed this is a very clever idea as one can nearly always show16 that |Ψ>, 
being a product of independent QWFs, must consist of independent ontic states. 

On the other hand if a measurement of a state with zero probability ever occurs 
(e.g., corresponding to an EN measurement when a not-EN state was prepared, 
indicating a violation of the predicted quantum probabilities, does that indicate 
Einstein was right after all and quantum physics is ontologically incomplete?17  

Could this be proven experimentally? All one would need to do is show that the 
condition of never finding a zero probability case in any the 2n possible cases would 
possibly do it. Suppose that indeed one were to find all (measurement) projections onto 
such entangled base states devices never occurring with zero probability.18 According to 

                                                             
16 PBR also carry out an error analysis to complete their proof. 
17 Such a violation would tell us that it is possible, i.e., not in conflict with experimental results, that the 
wavefunction is epistemic. 
18 Matt Leifer in an email to me pointed out that from any epistemic HV theory, you can always construct 
one that is ontological and gives exactly the same predictions. Such an argument is given in M. 
Schlosshauer and A. Fine, “Implications of the Pusey-Barrett-Rudolph no-go theorem.” 
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PBR the epistemic nature of QWFs in violation of quantum physics, would be 
established. Einstein would emerge victorious and we would need a new physics 
beyond quantum physics. 

In summary we have a logical proof here: For two or more QWFs the Born rule 
(TBR) implies disjoint HV probability distributions (DPD), TBR→DPD. However 
DPD does not necessarily imply the Born rule, ~(DPD→TBR). They are not 
equivalent. The important statement of PBR is that conjoint probability distributions 
(CPD) violate the Born rule, (CPD~TBR). That means CPD make the quantum 
state unknown and hence epistemological. CPD mean the quantum state is not fixed 
by a determination of the HV. A given HV will produce more than one quantum state 
possibility—hence the quantum state is epistemological. Since ~CPD is the same as 
DPD and CPD implies a negation of the Born rule, CPD~TBR, reversing the logic 
we get TBR~CPD so TBRDPD.  

Let me add a few more comments. I believe that until the ontology/epistemology 
issue is fully resolved (although readers may believe it already resolved after reading 
Part I in this article), we still have the “measurement problem” that stimulated such 
considerations as given by PBR, Bell, Bohm, and many others. We also still have the 
nonlocality issue to deal with. Perhaps PBR can resolve this issue. Ontologically 
speaking, what does it mean to have nonlocal influences? What does it mean to have 
an observer effect (collapse of the QWF)? Does the PBR solution resolve these 
problems?  

Consider the effect of observation on an ontic QWF. Does a human being alter the 
QWF simply by making an observation? If the QWF is ontic then we have a real 
observer effect—observation (including nonlocal) indeed alters the QWF and therefore 
reality. That would mean that mind is inextricably tied into matter; they are truly 
entangled and such a finding could lead to breaking discoveries in the study of 
consciousness. On the other hand, if the QWF proves to be epistemic (as defined by 
PBR) in violation of the Born probability rule, observation is simply the usage of the 
Bayesian approach to probabilities wherein new information simply changes what we 
know, but leaves reality unscathed—at least what we mean by ontic reality. 

So let me summarize what we have garnered from PBR. Quantum wave functions 
are functions. That means they may depend on values of hidden variables to obtain 
values for themselves. Such hidden variables, like those found in thermodynamical 
functions, form probability distributions. Consequently if quantum wave functions 

                                                                                                                                                                 

http://arxiv.org/abs/1203.4779. Consequently Leifer doesn’t think it is possible to establish that the 
QWF is epistemic purely by experiment. I wish to thank Matthew Pusey and particularly Matt Leifer for 
many helpful comments concerning quantum physics and epistemology. 

http://arxiv.org/abs/1203.4779
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must be constructed from such distributions of hidden variables, these distributions 
never can have overlaps. Overlapping distributions indicate lack of knowledge of the 
quantum wave function and therefore represent an epistemological situation which as a 
consequence leads to a violation of the Born rule of probability conservation. In brief 
to make quantum wave functions be at least as real (and therefore ontological) as say 
pressure is in thermodynamics their HV distributions must never overlap. 

In the everyday world of our observations non-overlapping of probabilities means 
disjointed distributions, as seen, e.g., in Fig. 4, that lead to a world of objects behaving 
the laws of classical physics. In this next part of this article we shall consider another 
aspect of the epistemological/ontological question. Here the results of Bernhard 
Kochen & Ernst Paul Specker19 (KS) will play a gigantic role. An inequality based on 
the KS theorem formed by four physicists: Alexander A. Klyachko, M. Ali Can, Sinem 
Binicioğlu, and Alexander S. Shumovsky (KCBS) will be discussed next and will 
contradict the results of PBR by showing that the assumption of PBR that HVs must lie 
within disjointed probability distributions cannot reproduce actual measurements 
made on quantum physical systems having single quantum wave functions. 

PART II: HIDDEN VARIABLES: CONTEXTUALITY AND NON-
CLASSICALITY 

From what we have observed in Part I, given the validity of quantum physics, QWFs 
are to taken as real “out there” stuff if they can be based upon individual distributions 
of hidden variables that are not overlapping (disjointed). If on the other hand their 
hidden variable distributions overlap then the quantum wave functions will not 
reproduce the Born rule which merely takes into account the various probabilities 
predicted for various outcomes according to quantum physics. This violation of the 
Born rule would imply that quantum wave functions are not ontological but must be 
epistemological. In brief the violation would indicate quantum wave functions are not 
real and “out there” but merely a calculation tool.  

So it would seem that reality of QWFs depends on how they represent the values of 
objects—their variables—hidden or not. In classical physics we encounter something 
similar in the field of thermodynamics. For example, we picture an ideal gas of N 
particles with each particle having a position, x, and a momentum, mv. We never 
actually observe these hidden variables but take it that the pressure, P, of such an 
enclosed gas in a volume, V, is given by N<mv2>/3V, where <mv2> denotes twice the 

                                                             
19 Kochen, S. & Specker, E. P. “The Problem of Hidden Variables in Quantum Mechanics.” J. Math. 
Mech. 17, 59 (1967) 
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average (expected) kinetic energy of a particle. Hence by calculating PV times 3/2 and 
dividing by the number of particles in the gas, N, we can determine the average kinetic 
energy of each particle. Our knowledge of each actual particle’s kinetic energy is 
hidden from us, so we take that knowledge to be epistemological. Even so we take it 
that each particle really has a kinetic energy. We call such considerations the realm of 
classical physics. 

Classicality: an example 

Classicality also implies something more about hidden variables. Let me now look at a 
simple example one that will have far reaching implications for non-classicality. Take a 
coin. Examine carefully to see that it has two different sides heads (H) and tails (T). 
Suppose we assign a numerical value to each observed side say a = +1 for H and 
a = −1 for T. Now if we flip the coin, let it land, and observe one side; we can take our 
value assignment, say +1, for our H observation to be real and that the other 
unobserved side’s value, −1, also to be real, unobserved, but nevertheless still “out 
there.” We, in our everyday observations, take the world to consist of such objects and 
assign values to our observations even though we usually never actually see or count 
them all. 

Now suppose we have five such coins. Further suppose we never actually see all the 
distributed values of the coins—that is they are hidden variables. We further suppose 
the coins are each contained in separate sectors of the apparatus shown in Fig. 9, so 
that upon performing a measurement we only see two adjoining coins. Even so, 
counting on the reality of the coins, it is not difficult to see that after flipping and 
landing, there are 32 (25) possible ways these five coins can show a side. If we assign a 
label, Ak, to designate the observation of the indicated values, ak = ±1, associated with 
coin k and then multiple consecutive values, ak ak+1, corresponding (as shown in Fig. 10) 
to the observed pair of adjacent coins we can compute the following sum, Sj, expressed 
as a function of the values , ak, k ∈ (1, 2, 3, 4, 5) for a given run j (a run means flipping 
all five coins at once): 

Sj (a1, a2, a3, a4, a5) = Σk ak ak+1 = a1 a2 + a2 a3 + a3 a4 + a4 a5 + a5 a1,  

   

(k modulo 5)        eqn. 02.  

Only two coins are visible after flipping all five coins simultaneously. Which two 
can be viewed depends on the rotating pie sector that randomly can click into one of 
five possible positions obscuring three of the coins and exposing any two adjacent 
coins. We take it that the rotating pie sector is rotated after each flip before any 
observation is carried out. 
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Fig. 10. Non-Contextuality measurements of  two coins out of  five. The pie 
sector (in gray) can rotate and click into positions where only two adjacent 

coins are visible at a time. Here coins 3 and 4 are observed while the 
remaining coins are hidden from view. 

 

What is the lowest value Sj can take? Clearly the lowest value for Sj would occur 
when each term of eqn. 02 has the value −1. This could be arranged by having each ak 
of the first four terms with alternate values, but then regardless of the sign of a1 the fifth 
term must have value +1. Taking all possible ways these values can be assigned such 
that four terms each have the value −1, one remaining term must always have value +1; 
it is not difficult to see that in every such hidden alternate ak values assignment, 
Sj = −3. 

After a single flipping of all five coins, let us examine a typical pair of terms, such 
as a1 a2 and a2 a3. The question we ask is: can the value of a2 depend on which of the 
two terms it is a part of? Commonsense tells us that the answer is no—whatever 
happens to coin 1 or coin 3 cannot influence what happens to coin 2. Mathematically 
we say the probabilities for all such terms consist of joint probabilities and therefore 
independent probabilities. We label this as a non-contextual situation—all such situations 
wherein measurements of a system’s properties (here Ak) are able to be defined 
independently of both their own measurements and the measurements of any other 
systems (say Ak±1) define what is meant by non-contextuality. 

In Table 1 I have shown just how Sj is computed for five separately weighted coins 
for each run, j. I have arbitrarily assigned consistent probabilities for heads (tails) to 
appear for each coin separately: for a1=±1, p1=0.1, 0.9; a2=±1, p2=0.9, 0.1; a3=±1, 
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p3=0.1, 0.9; a4=±1, p4=0.9, 0.1; and for a5=±1, p5=0.1, 0.9 where the plus sign indicates 
the 1st value for p, and the minus sign indicates the 2nd. Thus the probability, Pj, 
(where j indicates the number for a particular run) for each five-coin toss distribution of 
H and T is the product p1 p2 p3 p4 p5. 

 

 

Table 1. Non-Contextuality Table for 5 unequally weighted coins. 

 

As is easy to see by perusing the table, the minimum value for Sj (see entry for j=6, 
e.g.) is indeed −3. We can also compute Sj for each possible toss of the five coins 
multiplied by the probability, Pj, for that particular set of values: Sj Pj. We also find that 
SjPj cannot be less than −3. If we add up the results found in the column labeled Sj Pj 
we get the average or expectation value of these Ak Ak+1 measurements, where the 
brackets, “<>,” denote expectation value: 

<Sj (A1, A2, A3, A4, A5)> = Σj Pj Sj (a1, a2, a3, a4, a5)     
  

 = Σj Pj a1 a2 + Σj Pj a2 a3 + Σj Pj a3 a4 + Σj Pj a4 a5 + Σj Pj a5 a1.  eqn. 03.  

Since Pj is a probability, we note that Σj Pj = 1 as given at the bottom of the column 
labeled Pj. We also note as expressed in eqn. 03 that the average of the sums, Σj Pj Sj, is 

j a1 a2 a3 a4 a5 a1 a2 a2 a3 a3 a4 a4 a5 a5 a1 Sj Pj Sj  Pj Pj a1 a2 Pj a2 a3 Pj a3 a4 Pj a4 a5 Pj a5 a1

1 1 1 1 1 1 1 1 1 1 1 5 0.00729 0.03645 0.00729 0.00729 0.00729 0.00729 0.00729
2 1 1 1 1 -1 1 1 1 -1 -1 1 0.00081 0.00081 0.00081 0.00081 0.00081 -0.00081 -0.00081
3 1 1 1 -1 1 1 1 -1 -1 1 1 0.00081 0.00081 0.00081 0.00081 -0.00081 -0.00081 0.00081
4 1 1 1 -1 -1 1 1 -1 1 -1 1 0.00009 0.00009 0.00009 0.00009 -0.00009 0.00009 -0.00009
5 1 1 -1 1 1 1 -1 -1 1 1 1 0.06561 0.06561 0.06561 -0.06561 -0.06561 0.06561 0.06561
6 1 1 -1 1 -1 1 -1 -1 -1 -1 -3 0.00729 -0.02187 0.00729 -0.00729 -0.00729 -0.00729 -0.00729
7 1 1 -1 -1 1 1 -1 1 -1 1 1 0.00729 0.00729 0.00729 -0.00729 0.00729 -0.00729 0.00729
8 1 1 -1 -1 -1 1 -1 1 1 -1 1 0.00081 0.00081 0.00081 -0.00081 0.00081 0.00081 -0.00081
9 1 -1 1 1 1 -1 -1 1 1 1 1 0.00081 0.00081 -0.00081 -0.00081 0.00081 0.00081 0.00081
10 1 -1 1 1 -1 -1 -1 1 -1 -1 -3 0.00009 -0.00027 -0.00009 -0.00009 0.00009 -0.00009 -0.00009
11 1 -1 1 -1 1 -1 -1 -1 -1 1 -3 0.00009 -0.00027 -0.00009 -0.00009 -0.00009 -0.00009 0.00009
12 1 -1 1 -1 -1 -1 -1 -1 1 -1 -3 0.00001 -0.00003 -0.00001 -0.00001 -0.00001 0.00001 -0.00001
13 1 -1 -1 1 1 -1 1 -1 1 1 1 0.00729 0.00729 -0.00729 0.00729 -0.00729 0.00729 0.00729
14 1 -1 -1 1 -1 -1 1 -1 -1 -1 -3 0.00081 -0.00243 -0.00081 0.00081 -0.00081 -0.00081 -0.00081
15 1 -1 -1 -1 1 -1 1 1 -1 1 1 0.00081 0.00081 -0.00081 0.00081 0.00081 -0.00081 0.00081
16 1 -1 -1 -1 -1 -1 1 1 1 -1 1 0.00009 0.00009 -0.00009 0.00009 0.00009 0.00009 -0.00009
17 -1 1 1 1 1 -1 1 1 1 -1 1 0.06561 0.06561 -0.06561 0.06561 0.06561 0.06561 -0.06561
18 -1 1 1 1 -1 -1 1 1 -1 1 1 0.00729 0.00729 -0.00729 0.00729 0.00729 -0.00729 0.00729
19 -1 1 1 -1 1 -1 1 -1 -1 -1 -3 0.00729 -0.02187 -0.00729 0.00729 -0.00729 -0.00729 -0.00729
20 -1 1 1 -1 -1 -1 1 -1 1 1 1 0.00081 0.00081 -0.00081 0.00081 -0.00081 0.00081 0.00081
21 -1 1 -1 1 1 -1 -1 -1 1 -1 -3 0.59049 -1.77147 -0.59049 -0.59049 -0.59049 0.59049 -0.59049
22 -1 1 -1 1 -1 -1 -1 -1 -1 1 -3 0.06561 -0.19683 -0.06561 -0.06561 -0.06561 -0.06561 0.06561
23 -1 1 -1 -1 1 -1 -1 1 -1 -1 -3 0.06561 -0.19683 -0.06561 -0.06561 0.06561 -0.06561 -0.06561
24 -1 1 -1 -1 -1 -1 -1 1 1 1 1 0.00729 0.00729 -0.00729 -0.00729 0.00729 0.00729 0.00729
25 -1 -1 1 1 1 1 -1 1 1 -1 1 0.00729 0.00729 0.00729 -0.00729 0.00729 0.00729 -0.00729
26 -1 -1 1 1 -1 1 -1 1 -1 1 1 0.00081 0.00081 0.00081 -0.00081 0.00081 -0.00081 0.00081
27 -1 -1 1 -1 1 1 -1 -1 -1 -1 -3 0.00081 -0.00243 0.00081 -0.00081 -0.00081 -0.00081 -0.00081
28 -1 -1 1 -1 -1 1 -1 -1 1 1 1 0.00009 0.00009 0.00009 -0.00009 -0.00009 0.00009 0.00009
29 -1 -1 -1 1 1 1 1 -1 1 -1 1 0.06561 0.06561 0.06561 0.06561 -0.06561 0.06561 -0.06561
30 -1 -1 -1 1 -1 1 1 -1 -1 1 1 0.00729 0.00729 0.00729 0.00729 -0.00729 -0.00729 0.00729
31 -1 -1 -1 -1 1 1 1 1 -1 -1 1 0.00729 0.00729 0.00729 0.00729 0.00729 -0.00729 -0.00729
32 -1 -1 -1 -1 -1 1 1 1 1 1 5 0.00081 0.00405 0.00081 0.00081 0.00081 0.00081 0.00081

sums → 0 1 -1.92 -0.64 -0.64 -0.64 0.64 -0.64
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the sum of the averages for each term, ak ak+1,—something we expect to see in a linear 
equation and can be found in the table at the bottoms of the last five columns. Thus we 
find that as was the case for Sj ≥ −3, for each j run, the same is true for Σj Pj Sj ≥ −3, 
and for each and every Σj ak ak+1 Pj :  Hence: 

 
<A1 A2> + <A2 A3> + <A3 A4> + <A4 A5> + <A5 A1> ≥ −3.  eqn. 04. 

Eqn. 04 is known as the Klyachko-Can-Binicioğlu-Shumovsky (KCBS) inequality20 
and must apply in any hidden variable theory where the probabilities for all such terms 
consist of disjoint probabilities and therefore independent probabilities. Note again that 
in eqn. 04 we write <Ak Ak+1> to denote the expectation (same as average) value not 
necessarily the quantum physical expectation value; that is, 

<Ak Ak+1> = Σj Pj ak ak+1.     eqn. 05. 

In the table we find for these so-weighted coins, 

<Sj (A1, A2, A3, A4, A5)> = Σj Pj Sj = −1.92 ≥ −3,    eqn. 06. 

in compliance with the KCBS inequality. 
The important thing to note here is that the value taken by any measurement of Ak 

does not change in context when combined with neighboring Ak±1. And I repeat we call 
such observations non-contextual (e.g. the value obtained for A3 is independent of A2 or 
A4.). So we take note that noncontextual hidden variable measurements are those in 
which the value of Ak is independent of whether we measure Ak together with Ak-1 
(which is compatible with Ak), or together with Ak+1 (which is also compatible with Ak). 
A set of mutually compatible measurements is called a context.  

It is possible that Ak+1 and Ak-1 may not be necessarily compatible. {Ak, Ak-1} is one 
context and {Ak, Ak+1} is a different one, and they may not both be contained in a joint 
context. Fig. 10 illustrates that coins within sections of the ring in non-adjacent 
positions are never measured at the same time—only adjacent sections are observed. 
Hence non-adjacent measurements are, in this sense, not compatible21—we can never 
measure them simultaneously in this set-up. 

Yet noncontextuality applies here. The measurement of Ak will be the same in both 
contexts {Ak, Ak-1} and {Ak, Ak+1} regardless of which section it lies within. E. g., if, as 
in Fig. 9, the rotating pie sector covered sections 1, 2, and 3, exposing 4 and 5 instead 

                                                             
20 Klyachko, A., Can, M. A., Binicioğlu, S. & Shumovsky, A. S. “Simple Test for Hidden Variables in 
Spin-1 Systems.” Phys. Rev. Lett. 101, 020403 (2008). 
21 Here compatible means something rather simple—a covered coin and an uncovered coin are never 
observed simultaneously—hence they are incompatible.  
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of sections 5, 1, and 2, exposing 3 and 4, the coin showing in section 4 would not 
change value. Fig. 10, as clearly as I can make it, illustrates what is meant by 
noncontextuality in an non-compatible way, and even so, as a consequence, what is 
meant by classicality—the appearance of a classical world.  

Classicality means non-contextuality 

So why is contextuality import? Well it turns out that our everyday observations of 
things within our world of daily experience are non-contextual, whether compatible or 
not, and that is what we mean by a classically-perceived world. Such things are “out 
there” with both realized or observed values and hidden values. Nevertheless the 
hidden values are still taken to be “out there” and just as real as the values we do 
observe.22 If two or more things are “out there” or even if a single thing has possible 
observable consequences such as a coin with two sides or a die with six, we infer the 
existence of those hidden values even though we don’t actually observe them. Thus our 
observations are labeled classical. Classicality means we are logically consistent in 
applying values to possible, yet unobserved, observations as well as those values we do 
observe and assign such as the flight of a baseball shown in Fig. 1. 

It also means that when we do make observations of the values of two or more 
things, these values are independent of each other provided the things are not 
connected in some manner. For example if we look again at the five coins example, 
whatever value we determine for say coin 3, is quite independent of the values that the 
other coins might give us. We say these values are non-contextual. This even if coins 1 
and 3 are re-flipped, as long as we leave coin 2 alone, its value will not change. 
Examination of table 1 shows this as clearly as I can make it even if the coins are 
weighted unequally. But what would it mean if the value of a thing could change 
depending on the values of other things to which it has no connections? Such a world 
would mean classicality doesn’t apply in the real world. It would also imply that 
quantum wave functions are not just simply “out there” in spite of the PBS result given 
above. Or perhaps better stated the observed consequences of quantum wave 
functions, meaning their observed eigenvalues when measurements are actually made, 
can change depending on how other measurements are made simultaneously in 
context with them. 

                                                             
22 I should point out that we really don’t observe values—we assign them based upon observations of 
things. Thus a meter may indicate a number from which I assign a value. 
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Non-Classicality means contextuality 

When we consider measurements based within quantum physics, contextuality of 
observations comes into question and therefore so does classicality. The notion of 
contextuality probably first came into quantum physics in 1968. Two physicists, Simon 
Bernhard Kochen & Ernst Paul Specker (KS), came up with a rather perhaps complex 
but nevertheless surprising proof, a mathematical inequality, dealing with hidden 
variables;23 specifically what we assume to be real and “out there,” even if we don’t 
actually look to see, turns out to be an illusion. KS concluded that quantum 
mechanical observables cannot represent “elements of physical reality.” More 
specifically, they showed that any hidden variable theory that requires elements of 
physical reality to be non-contextual cannot be valid—i.e., will fail to predict observed 
results in some cases. Their theorem excludes hidden variable theories that are based 
on independence of the measurement arrangement—change the arrangement and the 
observations change. After KS’s discovery of their inequality and how quantum physics 
violates it, a number of papers appeared attempting to simplify their theoretical results 
(I have listed some but not all24). Soon after a number of experimenters came on the 
scene and appeared to be carrying out experimental tests of contextuality based on our 
current interests in quantum computing.25  

                                                             
23 Kochen, S. & Specker, E. P. Ibid. 
24 Peres, A. “Two simple proofs of the Kochen-Specker theorem.” J. Phys. A: Math. Gen. 24, L175–L178 
(1991). 
Cabello, A., Estebaranz, J. M. & Garcia-Alcaine, G. “Bell-Kochen-Specker theorem: A proof with 18 
vectors.” Phys. Lett. A 212, 183–187 (1996). 
Pavicic, M., Merlet, J. P., McKay, B. & Megill, N. D. “Kochen–Specker vectors.” J. Phys. A: Math. Gen. 
38, 1577–1592 (2005). 
Toh, S. P. & Zainuddin, H. “Kochen–Specker theorem for a three-qubit system: A state-dependent proof 
with seventeen rays.” Phys. Lett. A 374, 4834–4837 (2010). 
Cabello, A. “How many questions do you need to prove that unasked questions have no answers?” Int. J. 
Quantum. Inform. 4, 55–61 (2006). 
25 Xi Kong, Mingjun Shi, Fazhan Shi, Pengfei Wang, Pu Huang, Qi Zhang, Chenyong Ju, Changkui 
Duan, Sixia Yu, and Jiangfeng Du.  “An experimental test of the non-classicality of quantum mechanics 
using an unmovable and indivisible system.”  Source http://arxiv.org/abs/1210.0961v1. 
Tao Li, Qiang Zeng, Xinbing Song & Xiangdong Zhang. “Experimental contextuality in classical light” 
www.nature.com/scientificreports/ Scientific Reports volume7, Article number: 44467 (2017). 
Huang, Y.-F., Li, C.-F.; Zhang, Y.-S., Pan, J.-W. & Guo, G.-C. “Experimental Test of the Kochen-
Specker Theorem with Single Photons.” Phys. Rev. Lett. 90, 250401 (2003). 
Amselem, E., Radmark, M., Bourennane, M. & Cabello, A. “State-Independent Quantum Contextuality 
with Single Photons.” Phys. Rev. Lett. 103, 160405 (2009). 
D’Ambrosio, V. et al. “Experimental Implementation of a Kochen-Specker Set of Quantum Tests.” Phys. 
Rev. X 3, 011012 (2013). 
Hu, X.-M. et al. “Experimental Test of Compatibility-Loophole-Free Contextuality with Spatially 
Separated Entangled Qutrits”. Phys. Rev. Lett. 117, 170403 (2016). 

http://arxiv.org/abs/1210.0961v1
http://www.nature.com/scientificreports/
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In what follows I shall consider perhaps one of the simplest explanations of the type 
of the KS inequality: the KCBS inequality discussed above. KCBS looked at their 
inequality in terms of quantum physics to see if it still held. They considered a single 3-
state spin-1 system often referred to as a “qutrit” whereas a qubit refers to a 2-state 
system such as the spin of an electron. The simplest example of a qutrit is a photon 
which can be polarized along any direction in space. Their question was what would 
happen to the KCBS inequality if measurements were taken with respect to a cyclic 
quintuplet of unit vectors, d1, d2, d3, d4, and d5 such that di ⊥ di+1, with the indices taken 
modulo 5 as shown in Figs. 11 and 12. Each unit vector radially stretches from the 
center of a unit sphere to five distinct points forming a pentagram lying on a circle of 
latitude of the sphere. 

KCBS then looked at five different arrangements—each corresponding to a 
possible measurement of a qutrit’s values when measured along three mutually 
perpendicular directions of space—and then considered five possible measurements. 
Each measurement performed simultaneously dealt with the qutrit’s three possible 
states according to quantum physical laws. Here’s how that worked. 

 

                                                                                                                                                                 

Mazurek, M. D., Pusey, M. F., Kunjwal, R., Resch, K. J. & Spekkens, R. W. “An experimental test of 
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(2009). 
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Fig. 11. The KCBS pentagram (in red, enclosed in the orange circle of  
latitude of  the blue unit sphere) showing 5 unit vectors (in green) arranged 
so that any pair of  radial unit vectors, di and di+1 are orthogonal. The blue 

vector labeled |z> = (0, 0, 1) pierces the pentagram at its center and it is 
the eigenvector corresponding to the 0 eigenvalue of  the spin-1 projection 
along the z axis. Similarly |x> and |y> correspond to 0 eigenvalues of  the 

spin-1 projections along the x and y axes resp. 

 

Fig. 12. Looking down on the KCBS pentagram (enclosed in the orange 
circle of  latitude) from the north pole of  its enclosing unit sphere. The unit 

vectors d1 through d5 are shown together with their component values.  
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Just as we illustrated above using five coins KCBS examined how a spin-1 system 
could be construed to yield five observables Aj, j∈(1, 2, 3, 4, 5) taken in pairs Aj Aj+1, (j 
modulo 5. i.e., so that if j = 6 we roll j’s value back to 1). In order to discuss the KCBS 
idea as clearly as I can, we will need to consider measurements of the spin or angular 
momentum of a spin-1 system. As such spin-1 is an observable of light commonly 
known as the polarization of a photon. A spin-1 system can be represented by its 
components or projections along three mutually perpendicular directions, say x, y, and 
z, (where underlining means these are unit vectors along the three perpendicular axes 
of space). Now x, y, and z, can be pointing in various directions so long as they remain 
mutually perpendicular. 

In a diagonal representation,26 the square of the spin component along the x 
direction can be written Jx

2 = I − |x><x|, where “I” denotes the three dimensional 
identity matrix. Similarly we can write for the other mutually perpendicular 
projections: Jy

2 = I − |y><y|, and Jz
2 = I − |z><z|. In fact the projections of J2 along 

any three mutually perpendicular directions will also be simultaneously measureable 
(these observable are said to commute). It is easy to show Jx

2, Jy
2, and Jz

2 are mutually 
compatible and can be measured simultaneously. From these considerations it is 
possible to define observables, Ax = 2 Jx

2 − I = I − 2 |x><x|, and similarly for Ay and 
Az. It turns out that there are 3 eigenvectors and corresponding eigenvalues for each of 
these directions, d, such that 

Ad |d> = −1|d>          
Ad |d⊥> = +1 |d⊥>,      eqn. 07 

with the two directions perpendicular to d labeled d⊥. Hence we find in the complex 
Euclidean plane:27 

                                                             
26 The projection of the photon’s spin or angular momentum along any direction in space can take on one 
of three possible values, ±1 and 0. The three mutually perpendicular directions of space are usually 
written, x, y, and z. The underlining means these are unit vectors along their respective axes. As such it is 
possible to represent the spins of a photon as quantum physical operators Jx, Jy, and Jz. If we take l to be 
any one of these directions we can express Jl ϕ = i l ⊗ ϕ, where ϕ is a quantum state vector (a vector in 
complex Euclidean space) and “⊗” means vector cross product. Consequently, we find ϕ = l to be a 
corresponding eigenvector of Jl with zero eigenvalue according to Jl l = 0, and with 
ϕ = (m ± in)/√2, where l, m, n form any three mutually perpendicular unit vectors, 
Jl (m ± in)/√2 = ±1 (m ± in)/√2 . We can also compute the squares of the spins along these directions. 
Further computation then leads to Jl Jl ϕ = Jl

2 ϕ = ϕ − (l •ϕ) l. In operator language Jl
2 = I − | l >< l |. 

27 See e.g., Jammer, Max. The Philosophy of Quantum Mechanics. NY: Wiley & Son. 1974. p. 324. We identify 
the Hilbert space of a spin-1 system with the complex Euclidean plane. As such, e.g. 
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Az |(x ± iy)/√2> = +1 |(x ± iy)/√2>,       
  Az |z> = −1 |z>.       eqns. 08. 

We find similar equations for Ay and Az. Suppose we now consider, as KCBS did, 
the five unit vectors labeled, d1, d2, d3, d4, and d5 such that these unit vectors form a 
pentagram as shown in Figs. 11 and 12. From the pentagram diagram, with 
R2 = 1 + cos(π/5), where cos(π/5) = (1 + √5)/4, we compute the x, y, and z 
components of each unit di vector to be: 28 

d1 = (1, 0, cos (π/5)1/2)/R,         
d2 = (cos (4π/5), −sin (4π/5), cos (π/5)1/2)/R,       
d3 = (cos (2π/5), sin (2π/5), cos (π/5)1/2)/R,        
d4 = (cos (2π/5), −sin (2π/5), cos (π/5)1/2)/R,       

 d5 = (cos (4π/5), sin (4π/5), cos (π/5)1/2)/R.     eqns. 09. 

In terms of the di vectors we are looking at Adi = I − 2 |di><di| and the 
corresponding product Adi Adi+1 = I − 2 |di><di| - 2 |di+1><di+1|, since <di+1|di> = 0, 
because they are orthogonal. Let me now write Ai for Adi so that |di> is now written 
simply |i>. 

A quick look at Ai Ai+1 gives I – 2 |i><i| − 2 |i + 1><i + 1|. If we let 
d⊥ = i ⊗ (i+1), where “⊗” denote the vector cross product, then 
<d⊥|i> = <d⊥|i+1> = 0. Consequently we find for all i modulo 5, 

Ai Ai+1 |i ⊗ (i + 1)> = +1 |i ⊗ (i + 1)>,      
Ai Ai+1 | i> = − 1 |i>,         

Ai Ai+1 |(i + 1)> = −1 |(i + 1)>.     eqns. 10. 

KCBS then go on to consider the same inequality given in eqn. 04, but this time 
the brackets refer to computing the quantum physics expectation values of the 
Ai Ai+1 observables. 

<A1 A2> + <A2 A3> + <A3 A4> + <A4 A5> + <A5 A1> ≥ −3,    
where < Ai Ai+1 > = <ϕ| Ai Ai+1 |ϕ>.      eqn. 11. 

                                                                                                                                                                 

Jz ϕ = (0 −𝑖𝑖 0
𝑖𝑖 0 0
0 0 0

) ϕ. Hence Jz (x + iy)/√2 = Jz ( 
1
𝑖𝑖
0
)/√2 = +1 ( 

1
𝑖𝑖
0
)/√2, or in terms of Jz ϕ = iz⊗ϕ, we 

have 
 
Jz (x + iy)/√2 = iz⊗(x+iy)/√2  = (iy+x)/√2. 
28 With r2 = cos (π/5) = − cos (4π/5), 2r4 − 1 = cos (2π/5), and R2 = 1 + r2. Hence d1 = (1, 0, r)/R, 
d2 = (-r2, -(1−r4)1/2, r)/R, d3 = ((2r4 − 1), 2r2 (1−r4)1/2, r)/R, d4 = ((2r4 − 1), -2r2 (1−r4)1/2, r)/R, 
d5 = (-r2, (1−r4)1/2, r)/R. 
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So for each term we can always find a state vector ϕ such that 
<ϕ| Ai Ai+1 |ϕ> = −1.29 One might expect that the sum Σi

5<ϕ| Ai Ai+1 |ϕ> (i modulo 
5) would be able to reach −5 and thus violate the KCBS inequality. However this turns 
out to not be true in general. If we had chosen ϕ to be the eigenvector corresponding 
to Jz

2 |ϕ±1> = +1|ϕ±1>, with |ϕ±1> = (|x> ±i |y>)/√2 = (1, ±i, 0)/√2 and we would 
find30  

Σi
5<ϕ±1| Ai Ai+1 |ϕ±1> = −5 + 2√5 = − 0.5279 > −3,   eqn. 12. 

well within the classical range shown in Table 1, and so still in compliance with the 
KCBS inequality. 

However KCBS did show how such a violation would occur when the expectation 
value, Σi

5<ϕ| Ai Ai+1 |ϕ>, is computed for |ϕ0> = |z> = (0, 0, 1), where |ϕ0> is the 
“0” eigenfunction of Jz

2 (i.e., Jz
2 |z> = 0). In this case we easily find,31 

Σi
5<ϕ0| Ai Ai+1 |ϕ0> = 5 − 4√5 = − 3.944 < −3,   eqn. 13. 

thus violating the KCBS inequality. KCBS point out that their violation of the KCBS 
inequality when (0, 0, 1) is used means their result is state-dependent as we can see by 
comparing eqns. 12 and 13. It also indicates that classical HVs cannot underlie QWFs 
even for a single quantum wave function as per a spin-1 system. 

DISCUSSION OF PART II: DISJOINT AND CONJOINT HVS DO NOT EXIST 

So we must conclude that quantum physics for certain states yields predictions that 
conform to experiments that do not conform to our classical intuitive notion that what 
we observe as real does not depend on what else we observe along with it. Contrarily 
change the “what else” and the observation itself changes. KCBS have shown this to be 
the case for a single photon hence consideration of nonlocality and entanglement does 
not enter their proof nor do I discuss this attribute of two or more particle systems. 
Since the KCBS paper, many experiments have been performed (see references in end 
note 25) confirming that indeed observations can and do change depending on what 
else is observed along with them. 

We might have expected this result since the uncertainty principle tells us that we 
cannot observe certain pairs of observables such as momentum and position of an 

                                                             
29 For example either <i| Ai Ai+1 | i> = − 1  or , <i+1| Ai Ai+1 | i+1> = − 1. 
30 Jz |ϕ0> = 0, and with |ϕ±1> = (|x>± i|y>)/√2,  Jz |ϕ±1>  = ±1 |ϕ±1>. 
31 To see this consider that Σi

5 <z| Ai Ai+1 |z> = Σi
5 <z| I |z> − 4 Σi

5 <z| i><i |z> where 
<z| i> = (0, 0, 1)•(dix ,diy , diz) = diz = r/R = 1/(5)1/4 . Hence Σi

5 <z| i><i |z> = 5/√5 =√5 and thus 
Σi

5 <z| Ai Ai+1 |z> = 5 − 4√5. 
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object simultaneously. But the contextuality considerations of KCBS and others goes 
much farther than that, for they indeed consider simultaneous observation of 
commuting observables—those that can be observed simultaneously without changing 
values upon observation. In spite of the commutability of all observables considered, 
observations do not follow as our classically intuitive consideration would dictate—they 
are dependent on what other observations are made with them. What we see may not 
at all be what is “really out there,” but instead may be dependent on what else has been 
observed, even if not by us. 

As Lapkiewicz et al put it:32 “Such incompatible properties, however, contrast 
strongly with what we experience in our everyday lives. If we look at a globe of the 
world, we can only see one hemisphere at any given time, but we suppose that the 
shapes of the continents on the far side remain the same irrespective of the observer’s 
vantage point. Thus, by spinning the globe around to view different continents, we are 
able to construct a meaningful picture of the whole. It is reasonable to assume that 
observation reveals features of the continents that are present independent of which 
other continent we might be looking at. In this way, classical physics allows us to assign 
properties to a system without actually measuring it. All these properties can be 
assumed to exist in a consistent way, whether they are measured or not.” Yet the 
experimental results of Lapkiewicz et al show that in spite of the obvious non-contextual 
appearance of globes and whatnot, fundamentally —at the quantum physics level— 
classical physics is wrong. Appearances of things depend on the contexts in which those 
things are observed. 

As Cabello put it:33 “Quantum correlations are contextual in the sense that they 
cannot be explained assuming that the result of a test A is independent of whether A is 
performed together with a compatible test B or with a compatible test C (which may be 
incompatible with B). This is the assumption of noncontextuality (NC) of results, and 
NC HV theories are those making this assumption. Two tests are compatible when, for 
any preparation, each test always yields an identical result, no matter how many times 
the tests are performed or in which order.” 

CONCLUSION 

Is there a hidden nature of reality? Such a question arises naturally in quantum physics. 

                                                             
32 Quoted from: R. Lapkiewicz, P. Z. Li, C. Schaeff, N. K. Langford, S. Ramelow, M. Wiesniak, and A. 
Zeilinger, “Experimental non-classicality of a indivisible quantum system.” Nature 474, 490 (2011). 
33 Quoted from: Cabello, A. “Simple Explanation of the Quantum Violation of a Fundamental 
Inequality.” Phys. Rev. Lett. 110, 060402 (2013). 
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According to conclusions reached in Part I of this study there may be hidden variables 
which if known would yield the results we observe when measurements are carried out. 
However these hidden variables must exist “classically”—there cannot be situations in 
which a value for a HV can indicate two or more quantum wave functions 
simultaneously. Thus if an HV for a quantum wave function. ϕ1, lies within a range of 
values ρ1, and another HV for a quantum wave function. ϕ2, lies within a range of 
values ρ2, these ranges must not have overlapping values—they may be disjoint but not 
conjoint distributions. Hence from Part I we would conclude that if classical 
(ontological) HVs indeed exist then the necessary result that QWFs must also be 
ontological–really “out there” follows. But what if there is no such thing as classical real 
HVs?  

On the other hand, in Part II the conclusion was there could not be classical 
hidden variables underlying reality according to expectations and measurements made 
based on KCBS’s pentagram inequality. Quantum physical expectation values and 
measurements violate classicality—that is, any such classical HV theory in quantum 
physics does not conform to observations of the real world. 

So we have found that the issue of the role of HV in questions of ontology and 
epistemology of states is particularly important when considering quantum physics 
because, it has led to different theories about how reality is constructed. It also tells us 
even if we can observe attributes simultaneously; their values can change depending on 
contextuality. So it seems that quantum physics is telling us that reality is constructed 
contextually and ontological realism of HVs and QWFs appears to be illusionary. 
Given that quantum physics underlies classical physics, then even classical physics must 
also be an illusion, or perhaps better put epistemologically constructed. What you see 
“out there” depends on the context you put on your observations “in here.” No wonder 
there are so many different interpretations of “reality,” “facts,” and “opinions.” No 
wonder that we live in a world stuffed with prejudices and fears. Also no wonder that 
the world is also filled with hope and dreams and all kinds of beliefs. 

Thus we conclude that if quantum physics theory applies to real-world 
observations, the world cannot be a classical one—what we expect to see in it can and 
does depend ultimately on what context one makes in conjunction with one’s 
observations as well as one’s expectations. I believe this adds credence to the notion 
that it would be more fruitful to consider the “out there” as a product of the “in here”; 
in other words, quantum physics is telling us that the universe is a mental construction 
after all.34  

 
                                                             

34 Henry, Richard C. ibid. Also see: Kastrup, Bernardo. (2017) ibid. and Kastrup, B. (2014) ibid.  
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